

Vishay High Power Products

HEXFRED® Ultrafast Soft Recovery Diode, 210 A

	Bas
LF-PAK (D-67)	catho

PRODUCT SUMMARY				
I _F (maximum)	210 A			
V_{R}	400 V			
I _{F(DC)} at T _C	106 A at 100 °C			

FEATURES

- Very low Q_{rr} and t_{rr}
- · Lead (Pb)-free
- · Designed and qualified for industrial level

BENEFITS

- · Reduced RFI and EMI
- · Reduced snubbing

DESCRIPTION

HEXFRED® diodes are optimized to reduce losses and EMI/RFI in high frequency power conditioning systems. An extensive characterization of the recovery behavior for different values of current, temperature and dl/dt simplifies the calculations of losses in the operating conditions. The softness of the recovery eliminates the need for a snubber in most applications. These devices are ideally suited for power converters, motors drives and other applications where switching losses are significant portion of the total losses.

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Cathode to anode voltage	V_R		400	V	
Continuous forward current		T _C = 25 °C	210		
Continuous forward current	I _F	T _C = 100 °C	106	Α	
Single pulse forward current	I _{FSM}	Limited by junction temperature	600		
Non-repetitive avalanche energy	E _{AS}	$L = 100 \mu H$, duty cycle limited by maximum T_J	1.4	mJ	
Maximum power dissipation	P_{D}	T _C = 25 °C	329	w	
Maximum power dissipation		T _C = 100 °C	132	Į vv	
Operating junction and storage temperature range	T _J , T _{Stg}		- 55 to + 150	°C	

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
Cathode to anode breakdown voltage	V _{BR}	I _R = 100 μA		400	-	-	
		I _F = 90 A		-	1.06	1.45	V
Maximum forward voltage	ximum forward voltage V _{FM}	I _F = 180 A	See fig. 1	-	1.2	1.67	
		I _F = 90 A, T _J = 125 °C		-	0.96	1.23	
Maximum reverse leakage current	I _{RM}	T _J = 125 °C, V _R = 400 V	See fig. 2	-	0.6	2	mA
Junction capacitance	C _T	V _R = 200 V	See fig. 3	=	180	260	pF
Series inductance	L _S	From top of terminal hole to mounting plane		1	7.0	-	nΗ

Document Number: 94044 Revision: 01-Aug-08

HFA90NH40PbF

Vishay High Power Products

HEXFRED® Ultrafast Soft Recovery Diode, 210 A

DYNAMIC RECOVERY CHARACTERISTICS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
Reverse recovery time	t _{rr}	T _J = 25 °C	-	-	90	140	ns
See fig. 5		T _J = 125 °C		-	158	240	
Peak recovery current	I _{RRM} -	T _J = 25 °C		-	9	17	Α
See fig. 6		IRRM	T _J = 125 °C	I _F = 90 A dI _F /dt = 200 A/μs	-	15	30
Reverse recovery charge	Q _{rr} –	T _J = 25 °C	$V_{R} = 200 \text{ V}$	-	420	1100	nC
See fig. 7		Q _{rr}	T _J = 125 °C	-11 -22	-	1200	3200
Peak rate of recovery current		T _J = 25 °C		-	370	-	Δ /
See fig. 8		T _J = 125 °C		-	270	-	A/μs

THERMAL - MECHAN	ICAL SPE	CIFICAT	ions		
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction and storage temperature range		T _J , T _{Stg}		- 55 to 150	°C
Maximum thermal resistance, junction to case		R_{thJC}	DC operation See fig. 4	0.38 0.05	
Typical thermal resistance, case to heatsink		R _{thCS}	Mounting surface, flat, smooth and greased		
Approximate weight				30	g
Approximate weight				1.06	oz.
Mounting torque	minimum		Non-lubricated threads	3 (26.5)	
Mounting torque	maximum			4 (35.4)	N⋅m
Tin-dis-	minimum			3.4 (30)	(lbf · in)
Terminal torque ————————————————————————————————————				5 (44.2)	1
Case style			HALF-PAK module		•

Document Number: 94044 Revision: 01-Aug-08

HEXFRED® Vishay High Power Products Ultrafast Soft Recovery Diode, 210 A

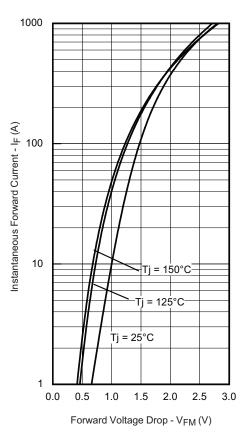


Fig. 1 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current

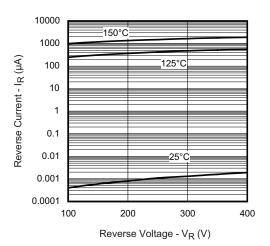


Fig. 2 - Typical Reverse Current vs. Reverse Voltage

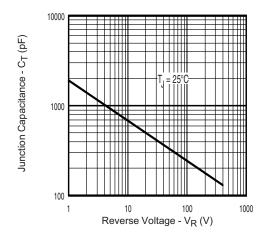


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

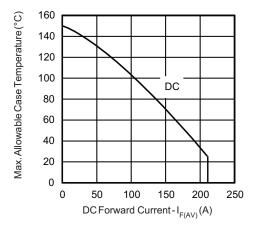


Fig. 4 - Maximum Allowable Case Temperature vs. DC Forward Current

HFA90NH40PbF

Vishay High Power Products

HEXFRED® Ultrafast Soft Recovery Diode, 210 A

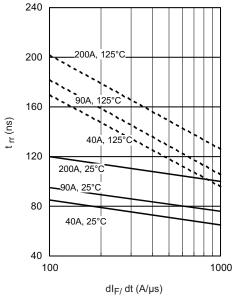


Fig. 5 - Typical Reverse Recovery Time vs. dl_F/dt

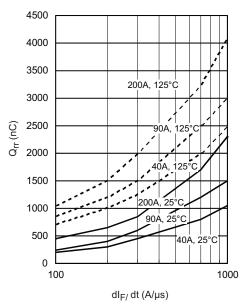


Fig. 7 - Typical Stored Charge vs. dl_F/dt

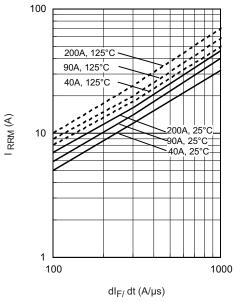


Fig. 6- Typical Recovery Current vs. dI_F/dt

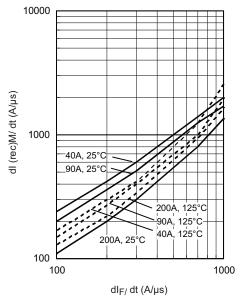


Fig. 8 - Typical $dI_{(rec)M}/dt$ vs. dI_F/dt

HEXFRED® Vishay High Power Products Ultrafast Soft Recovery Diode, 210 A

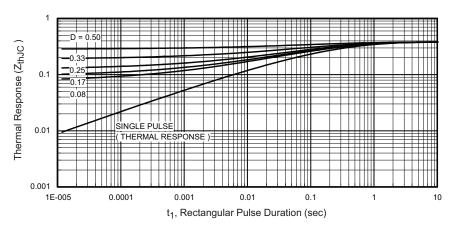


Fig. 9 - Maximum Thermal Impedance Z_{thJC} Characteristics (Per Leg)

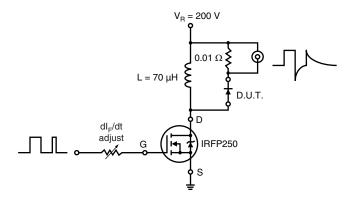
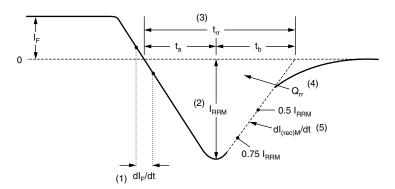



Fig. 10 - Reverse Recovery Parameter Test Circuit

- (1) dl_F/dt rate of change of current through zero crossing
- (2) I_{RRM} peak reverse recovery current
- (3) t_{rr} reverse recovery time measured from zero crossing point of negative going I_F to point where a line passing through 0.75 I_{RRM} and 0.50 I_{RRM} extrapolated to zero current.
- (4) \mathbf{Q}_{rr} area under curve defined by \mathbf{t}_{rr} and \mathbf{I}_{RRM}
 - $Q_{rr} = \frac{t_{rr} \times I_{RRM}}{2}$
- (5) $dl_{(rec)M}/dt$ peak rate of change of current during t_b portion of t_{rr}

Fig. 11 - Reverse Recovery Waveform and Definitions

Vishay High Power Products

HEXFRED® Ultrafast Soft Recovery Diode, 210 A

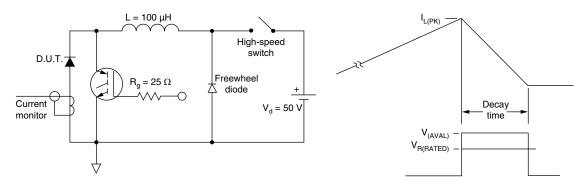


Fig. 12 - Avalanche Test Circuit and Waveforms

ORDERING INFORMATION TABLE

Device code

HFA 90 N H 40 PbF

1 2 3 4 5 6

1 - HEXFRED® family
2 - Average current rating

3 - N = Not isolated4 - H = HALF-PAK

5 - Voltage rating (400 V)

6 - Lead (Pb)-free

LINKS TO RELATED DOCUMENTS		
Dimensions	http://www.vishay.com/doc?95020	

Document Number: 94044 Revision: 01-Aug-08

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com